

COURSE SYLLABUS

Natural Gas production Engineering 6100012

COURSE DETAILS

Campus: Ashdod

Department: Mechanical Engineering

Discipline: Natural gas Year of Study: Third

Semester: A

Credit: 2.5

ECTS Credit Points: 3.75

Lecturer(s): Jeffrey Bellaiche

jeffrbe@ac.sce.ac.il

Academic year: 2019-2020

Type of Course: Required

Level of Course: Undergraduate

Mode of Delivery: Face to face

Prerequisites:

Co-Requisites:

Language of Instruction: English

Work Placement(s):

Teaching Assistant(s):

AIM

To provide knowledge of the processes used throughout the natural gas chain, their logical sequences, and the chemical reactions, main equipment and operating conditions.

LEARNING OUTCOMES

On successful completion of the course, the students will be able to:

- **1.** Understand the fundamentals of natural gas.
- 2. Have a good knowledge of the processes used in the natural gas chain
- **3.** Solve simple, realistic engineering problems.

COURSE CONTENTS

Week	Subject	Relevant Reading
1	Introduction to natural gas.	[1]
2	General processes of natural gas. [1]	
3	Hydrate inhibition.	[1]
4	Gas dehydration	[1]
5	Acid-gas removal. [1]	
6	General review.	
7	Midterm quiz.	
8	Mercury removal and liquid recovery.	[1]
9	Production chemistry.	[1]
10	Environmental challenges: air and water discharges.	[1]
11	Material balance and flow analysis.	[1]
12	System performance.	[1]
13	General review.	

RECOMMENDED OR REQUIRED READING

Text book:

1. Havard Devold (2013), Oil and Gas Production Handbook: An Introduction to Oil and Gas Production, Transport, Refining and Petrochemical Industry.

PLANNED LEARNING ACTIVITIES AND TEACHING METHODS

Lecture hours: 2, Practice hours: 1. Two frontal lecture hours and 2 practice sessions per week, combining traditional teaching methods with personal experience, a common-sense approach, as well as the use of audiovisual presentations and the resolution of practical, real-world problems.

ASSESSMENT METHODS AND CRITERIA

Criterion	Percentage	Comments
Final Exam:	70%	A passing grade of 56 or higher is mandatory. If the final exam score is below 56, that becomes the final course grade.
Quizzes:	30%	